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Abstract

The properties of a semiconductor crystal are significantly affected by the presence of
impurities, whether they are necessary dopants or unwanted defect impurities. Light impu-
rities give rise to local vibrational modes (LVMs) with frequencies higher than the lattice
phonons of the pure crystal. The vibrational properties of these LVMs are important in
characterizing the stability and diffusion of the defects that produced them. This thesis is
specifically interested in determining the dynamics, that is the lifetimes, decay channels, and
decay mechanisms of the LVMs of interstitial oxygen in silicon and germanium. The spectra
of oxygen in Si and Ge show that the linewidth, which is inversely related to the lifetime,
of the 170 defect in Si is twice as broad as the "0 and 'O lines, and that the linewidths
of Ge are ten times narrower than those in Si. These two features are not well understood,
but direct lifetime measurements have corroborated the static spectral measurements, and
a detailed examination of the theory of allowed decay channels for the excited state provides

an explanation for these features.
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I. INTRODUCTION

Semiconductors are an important class of materials distinguished from other ma-
terials by many physical properties, but most importantly, by their electric resistivity
p or the resistance to electric current passing through the material. Materials with
a resistivity larger than 10'°-10'? Qcm are classified as insulators, while those with a
resistivity less than 1077-107° Qcm are classified as conductors. The materials some-
where in between are semiconductors. A semiconductor’s resistivity is also highly
temperature dependent, and in contrast to most conductors, decreases with higher
temperature. Other characteristics of semiconductors include large impurity effects,
both positive and negative charge carriers, and sensitivity to light. There are many
solids that are classified as semiconductors. Group IV in the periodic table contains
some of the most important, namely, silicon (Si) and germanium (Ge). Other common
semiconductors are compounds such as GaAs, InSb, ZnSe, and PbTe.

In crystalline semiconductors, the ionized atoms form a periodic electric potential.
The free electrons moving in this periodic potential have quantized energy levels. A
semiconductor at 0K looks very much like an insulator; that is, certain energy bands
are completely full, with the remaining bands completely empty. These bands that
are empty at OK are called the conduction bands. The gap between the highest full
level and the lowest empty level is called the fundamental gap. In semiconductors,
this gap is small enough that at higher temperatures, electrons can be excited into
the conduction bands. The empty state, which such an electron leaves behind in an
otherwise full level, is called a hole and can also carry current.

The properties of a semiconductor material are more strongly affected by the pres-
ence of impurities than are other types of materials. There are two types of electrically
active impurities, donor impurities, which donate an electron to the conduction band,
and acceptor impurities, which accept electrons from anywhere in the crystal. In sil-
icon, elements from Group V of the periodic table, such as phosphorus (P), arsenic
(As) and antimony (Sb) have one more valance electron than silicon, so they act as
donor impurities and produce an n-type semiconductor, since the extra charge car-
riers are negative. Elements from Group III such as boron (B), aluminum (Al) and

gallium (Ga) have one less valance electron, so they act as acceptors, forming a p-type



semiconductor with extra positive charge carriers (holes).

The functioning of semiconductor devices depends on very controlled introduc-
tion of impurities, called doping, of the semiconductor wafer. Dopants can produce
conduction in the semiconductor at lower temperatures than would be required to
thermally excite enough electrons to the conduction band [1]. However, unwanted
impurities in a semiconductor crystal can contribute to the degradation of the device.
The vibrational properties of defects in semiconductors, particularly the interaction
dynamics and energy transfer mechanisms, are very important in determining the
structure of these defects, and in characterizing their stability, migration and reac-
tions.

The structure of the defects can be understood by frequency-domain measure-
ments, such as an Fourier transform infrared (FTIR) spectrum. Very high resolution
spectra and very accurate measurements have been taken of the linewidth of the ab-
sorption spikes in the infrared (IR) spectrum that correspond to the defects. From
these static measurements, we note several interesting points that can be further il-
luminated by high resolution time domain measurements of the lifetime (the lifetime
being related inversely to the linewidth of the absorption peak), as well as by some
theoretical discussion.

While the structure and static properties of many defects have been studied, their
dynamics are often not well understood. The defects produce localized vibrational
states, which have excited states. The processes we are trying to illuminate include
how the excited states couple to the phonon bath of the solid, the relaxation path
and the lifetimes of the excited states. Direct time domain measurements of the
lifetimes of the excited vibrational states are now possible because of recent advances
in tunable, ultrafast IR light sources, including optical parametric amplifiers (OPAs)
and free-electron lasers (FELs). Such studies are useful in understanding the energy
transfer pathways at defects and impurities in semiconductors.

In this thesis, the system under study is interstitial, meaning along the bond
axis, oxygen in silicon and germanium, where the oxygen is bonded to two Si or Ge
atoms. The oxygen defects have three natural isotopes: 1°0O, 17O, and *O. From the
frequency-domain measurements, we note that the linewidth of the 7O line in Si is

twice that of the 10 and 80 lines. Also, the linewidths of all of the isotopes in Ge



are almost ten times narrower than those in Si. A possible explanation for both of
these observations is found in the relaxation and decay mechanism and the coupling

of the LVM to the phonon bath.

II. THEORETICAL BACKGROUND
A. Crystal Structure

The study of crystalline solids forms a large portion of condensed matter physics.
Crystals as they are found in nature or grown in a lab are finite regular arrange-
ments of atoms. These finite arrangements are never perfect in practice, but can
be approximated by perfect infinite geometrical arrays of points called lattices. A
lattice is defined as “an infinite set of points in space so arranged that every point
has identical surroundings.” [2] It turns out that there are only 14 unique ways of
arranging points so that they have identical surroundings. These arrays are called the
Bravais lattice arrays. This does not mean that there are only 14 crystals structures,
since many different groups of atoms can be associated with a lattice point. The
standard volume that is used to identify and describe a particular structure is called
the crystallographic unit cell. Silicon (Si) and Germanium (Ge) are derived from the
face-centered cubic Bravais lattice. This is also called the diamond structure, since it
is the arrangement of the carbon atoms in diamond crystals [2]. The unit cell of the
diamond structure is shown in Figure 1.

The periodicity of the crystal structure leads to a periodic division of the wave
vector or momentum space into what are called Brillouin zones. These are defined
by the Bragg planes that bisect a set of vectors from the origin to the lattice points
that define the unit cell. The first Brillouin zone for the diamond structure is shown
in Figure 2. The Cartesian directions are indicated, but the more useful reference
points are the high symmetry points marked. The T point is the point of highest

symmetry, here located at the center of the unit cell.



FIG. 1: Diamond crystal structure unit cell FIG. 2: Brillouin zone of the diamond
structure with high symmetry points indi-

cated

B. Lattice vibrations and phonons

The atoms in a pure crystal solid, such as a semiconductor, oscillate collectively
about their equilibrium positions, resulting in quantized vibrational modes, called
phonons. A pure crystal has a well defined set of characteristic frequencies of vibra-
tion, called the phonon bath. These phonons involve the motion of many atoms, so
they are extended in real space. They are also extended in frequency space, as the
phonon bath covers a band of frequencies. While a full calculation of the energy and
momentum distribution of the phonons allowed in a particular crystal structure is
beyond the scope of this thesis, a number of approximations of increasing complexity
give good first order results, and are included in Appendix A.

This relation between the allowed vibrational frequencies w and their wave vectors,
k is called the phonon dispersion curve. Full ab initio calculations are available in the
literature [3-5]. Specific features that prove relevant are the splitting of the curve into
optical and acoustic branches, and again into transverse and longitudinal branches.
Phonons are classified into these four categories (listed in order of decreasing frequency
and energy): transverse optical (TO), longitudinal optical (LO), longitudinal acoustic
(LA), and transverse acoustic (TA).

The dispersion curves in Figure 3 are for Si and Ge. The graphs on the far
right side are the density of states plots, which are obtained by integrating over the

dispersion curves, giving the distribution of the density of phonon modes as a function
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FIG. 3: Phonon dispersion curve and density of states for silicon (top) and germanium

(bottom). Si figure courtesy of Wei [4], Ge figure courtesy of Giannozzi et al. [3].

of frequency, here in THz, or as a function of wavenumber, in cm!. The two elements
have identical crystal structure, so their dispersion and density of states curves are
very similar, with Ge having lower frequencies because its mass is higher than Si.

A phonon can exchange energy with radiation (photons) or with particles, and
these interactions must conserve energy (related to frequency) and momentum (re-
lated to the wavevector). Phonon-dispersion relations can therefore be determined
experimentally by scattering particles or radiation (photons) off the phonons in a
crystal. The typical energies of phonons are 0.01 eV, and this small energy limits
the types of particles that can be used to probe the crystal solid. Electromagnetic
radiation has too high an energy (keV), as do electrons (about 16 eV). Solids also
very readily absorb electrons, which prevents an effective scattering experiment. Neu-
trons, on the other hand, have an energy about the same as that of phonons, and their
lack of charge and high penetration makes them ideal for study of phonon dispersion.
Inelastic neutron scattering is used extensively to measure phonon-dispersion curves.

The markers along the curves in Figure 3 are experimental data points.



C. Local vibrational modes

Introduction of an impurity destroys the crystal symmetry; in addition to altering
the electronic properties of the sample, it also alters the vibrational properties and
new vibrational modes may appear. Impurities that are lighter than the host lattice
atom will give rise to higher frequency vibrational modes that are above the phonon
band of the pure solid. These modes are called local vibrational modes (LVMs), as
they are localized in both the real space domain and the frequency domain, while the
lattice phonons are not. Because of this localization, they show up as sharp lines in
the infrared (IR) absorption spectrum of the crystal sample [6].

The coupling between the LVMs and the phonon bath of the host crystal describes
the flow of energy into and out of impurity and defect complexes. This energy flow can
be significant because the electronic excitation that is deposited at the defects is then
available to promote defect migration and reactions, which has an important influence
on the degradation of semiconductor devices. The energy relaxation of these LVMs
involves redistributing the energy of the excited vibrational state to low-frequency
vibrational modes that are coupled inelastically to the local excited state. Typical
energy relaxation times are hundreds of femtoseconds to hundreds of picoseconds.

While high-resolution absorption spectra are available, the lifetime generally can-
not be accurately derived from the linewidth because of the extremely short time
scales that characterize the elastic transitions leading to dephasing of the vibrational
transition and linewidth broadening. Furthermore, inhomogeneous effects may con-
tribute significantly to the measured absorption linewidth.

The function describing the LVM absorption peaks is generally given by a convo-
lution of the homogeneous linewidth with a function describing the inhomogeneous
broadening. Inhomogeneous broadening can result from the strain fields induced by
the lattice defects in the sample. These strain fields can be reduced—and therefore
the inhomogeneous contribution to the linewidth also reduced—by lowering the defect

concentration in the sample. The homogeneous linewidth is then
1 N 1
©ondly  wcly

where 77 is the lifetime of population relaxation, and determines the natural linewidth

Ln (I1.1)

of the mode, and T is the time of phase relaxation (pure dephasing). At low temper-
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atures, elastic scattering of the local mode with phonons is reduced, and the first term
dominates, and the natural linewidth, I'y, can then be used to give a good estimate
of the vibrational lifetime by the following equation [7]:

1
T, = .
! 27TCPO

(I1.2)

The particular defect that produces the LVM we study is interstitial oxygen in
semiconductors. Oxygen in silicon was one of the first impurities studied using vibra-
tional spectroscopy [8]. In an early study, Kaiser et al. [9] measured the IR absorption
of silicon, and identified a 9um (1106 cm™') absorption band with oxygen content in
the samples. They suggested a model of an interstitial type defect, with the oxygen
atom bonded to its two neighboring Si atoms.

There are three types of vibrational motion that this defect exhibits. Shown in
Figure 4 are the vibrational modes of the interstitial oxygen defects in both Si and

Ge. The silicon modes are labeled with the representations of the D34 point group to
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FIG. 4: Vibrational modes of interstitial FIG. 5: Delocalization of oxygen in Si and
oxygen in germanium (top) and silicon Ge. Figure courtesy of Artacho [10]

(bottom). Figure courtesy of Artacho [10]

which they belong (discussed further in Appendix B). The modes are called, left to
right, the bending mode, the symmetric stretch mode, and the anti-symmetric stretch
mode. The anti-symmetric, also called asymmetric, stretch mode was identified with
the 1136cm ! absorption band by Hrostowski et al. [11]. The bending mode has two
orthogonal states, but because the bond angle of the Ge compound is smaller than

that of Si (172° in Si, and 140° in Ge), the bending motion in Ge is more of a circular
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motion around the bond axis, and the O atom is unlikely to move toward the bond
axis (see Figure 5) [10].

Recently, McCluskey et al. have studied the resonant interactions between the
asymmetric stretch local mode in O and a spatially extended mode using hydrostatic
pressure. The authors state that this transition from a localized to an extended mode

is the first step toward the decay into lattice phonons [12].

D. Multiphonon decay

The energy of the asymmetric stretch mode in Si is 1136cm ™1, but silicon’s phonon
bath only spans an energy range up to about 522cm~!. Therefore, since the energy
of the excited state exceeds the energy of a single phonon, more than one phonon will
be created in the decay process. This is called multiphonon relaxzation, and has been

derived by Nitzan et al. [13]. The Hamiltonian of the system can be written
H = Hrym + Hparg + Hinr, (IL.3)

where Hpyas describes the ground and excited states of the LVM, Hgary is the
Hamiltonian of the phonon bath in the crystal, and H;y7 describes the interaction
between the LVM and the phonon bath. The simplest quantum mechanical model
for an LVM is the harmonic oscillator. The coupling of the LVM to the phonon bath
requires the anharmonic corrections described by H;yr. Expanding each of the terms
in Eq. 11.3, we find

Hpyy = hwa'a, (IL.4)

which is the Hamiltonian for a simple harmonic oscillator,

N,
Hparn = Z Z hwi{u}b;r,{,,}bi,{u}, (IL.5)
{v} i=1
where each decay channel {v} is characterized by the set {w!"},wi"}, ..., w]{\}’y}} of ac-

cepting mode frequencies. In addition, energy must be conserved in the decay process,
that is, hw = Z;VZ”I hwj(-”). The interaction between the LVM and the phonon bath

produces an anharmonic perturbation in the harmonic Hyy s, which can be treated
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by first-order time-dependent perturbation theory. The coupling Hamiltonian is

Hint = Z 77,(0{,,}3{,,}0,Jr + G?V}BIU}G) (11.6)

{v}
where G,y is the coupling strength and By,; and BIU} are the products of the creation
and annihilation operators for all of the frequencies of a decay channel, given by

I o 2 b N gt

Buy = Ilizo’ biwy and By, = [lizg b1y
The contribution to the decay rate due to H;y is given by the standard first-order
perturbation theory result, and the total decay rate is given as the sum of the rates

of all the decay channels,

1
Tl == 271'2 |G{U}|2n{u}p{y} (11.7)
{v}

The function ny,, is the thermal population of the accepting modes, given by the

Bose-Einstein distribution,

hw/kgT) — 1
Ny = NeXp( w/ - ) (I1.8)
Hj:"l[exp(hwj JkgT) — 1]

In the low temperature limit, ny,y; = 1, and does not affect the decay rate. So the

decay rate depends on py,y, the spectral density of accepting states [13, 14].

III. EXPERIMENTAL TECHNIQUES
A. Fourier-transform infrared spectroscopy

Fourier-transform infrared (FTIR) spectroscopy is used widely in many areas of
physics, chemistry, and biology as a characterization technique. FTIR spectrometers
produce a low noise frequency-domain spectrum over a broad spectral range in a
relatively short amount of time. The main component of an FTIR spectrometer is a
Michaelson interferometer (see Figure 6).

The broadband source emits radiation at all IR wavelengths in a collimated beam,
which travels through a beam splitter. One beam is reflected off a fixed mirror and
the other off a movable mirror. The two beams recombine, travel through the sample

and are collected by a detector. The detector produces an interferogram, which is

12
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FIG. 6: Schematic diagram of an FTIR spectrometer. Figure courtesy of McCluskey [6]

a plot of intensity of the interfered beam versus path difference between the fixed
and movable mirrors. To maximize the signal-to-noise ratio, up to several thousand
interferograms are taken and the results averaged [6].

For a single frequency of light of wavenumber £, the intensity of the interferogram

Iy is given by the traditional two-beam interference relation
I(z) = J(k) [1 + cos(kz)], (II1.1)

where J (k) is the incident intensity of the broadband source as a function of frequency,
and z is the path difference between the two beams. Since the source contains more

than one frequency, the interferogram shows a superposition of intensities
I(z) = / J(k) [1 + cos(kx)] dk. (I11.2)
0

This can be written as the sum of the mean value of the interferogram plus the

intensity as a function of z:

/ h J(k)dk + / h J(k) cos(kz)dk = I(z) + / N J (k) cos(kz)dk. (I11.3)

The spectral distribution J(k) can be recovered by subtracting the mean value I(z)

and taking the inverse Fourier transform:

J(k) = /000 I(z) cos(kz)dz. (I11.4)
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The result is a frequency-domain plot of the intensity of the interferogram as a func-
tion of the frequency, low intensity indicating high absorption by the sample and vice
versa [15].

FTIR spectra for the interstitial oxygen defect are shown in Section IV A, Figures
9 and 10.

B. Optical parametric amplification

For time-domain spectroscopic measurements, it is essential to have high-power,
ultrafast laser sources that continuously span the spectrum of interest. In the past,
dye and solid-state lasers have been the major sources of picosecond pulses, but they
have very limited tuning range. Nonlinear optical effects have long been used for
frequency conversion, but recent technical advances in the quality of the nonlinear
crystals and in the pump lasers have led to the development and commercial avail-
ability of highly tunable laser systems called optical parametric devices. The basic
spontaneous optical parametric process is a quantum-field effect that results in one
high frequency photon annihilating and producing two lower frequency photons. In
an optical parametric device, the high frequency photon is the pump, w,, and the
low frequency photons are the signal, which is somewhat arbitrarily chosen as the
higher frequency of the two, ws and the idler, w;. Energy conservation requires that
wp = ws+w;. The functioning of these devices depends on the polarization properties

of the crystal material. The polarization P is defined as
P(7t) = eo (XVE + XPE? + \OE® + .., (I1L.5)

where the x() are the electric susceptibility of the crystal. In linear materials, and at
low electric field, only the first term is significant. In crystals with a high second-order
(nonlinear) optical polarization, the second-order polarization becomes significant.

Optical parametric amplification (OPA) is a three-wave mixing process, and the pump

14



beam, the signal, and the idler are coupled by the second-order polarization tensor:

PA(7 1) = g X (ws = wp — w;) : B, EF expli

€0 X ) -F—iwt]  (1IL6)

b~

(2)

<~ - = —
g0 X (wp =ws +w;) 1 EgE;expli(ks + ki) - 7 — iwpt]

other nonlinear terms.

+ o+ o+

Clearly, the coupling strength is determined by the strength of the nonlinear response
)
<>_<> . The solution to Maxwell’s wave equation

V2E(7,t) — poco—==E(7,1)

> =
7 PO(7, 1) (I11.7)

= HO@
contains three components, the pump, the signal, and the idler

E(7t) = Ep(F)e"E”'F*iwpt + E's(f')e“gs":i“’st + E'i(f)eigi'F*iwit + complex conjugates] .

(I11.8)

1
2

If the pump depletion is assumed to be negligible, E_’}, can be regarded as constant,
and I,(z) = I,(0). In an OPA system, there is a small input-signal intensity I,(0),
generally from a white light source. As the two beams propagate in the crystal, the
signal beam is amplified by coupling with the pump beam. The output intensities for

beams traveling in the z-direction are given by

I,(z) = I,(0)cosh®(gz)
I(2) = L,(0)% sinh?(gz) (11L.9)

S

The coefficient g is the gain

g=\l@ -~ oo xXopl? (ITL.10)

where g, is the steady-state small signal gain. To maximize the gain, then, we want
a high pump intensity I,, which requires a crystal with a high damage threshold
as well as a high . The second term describes the phase matching condition,
Ak = Ep — ks — /;Z-, for which the maximum gain occurs at Ak = 0. The phase

matching condition can be expanded to Ak = %”np — “2ny — “in;, and we know from
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energy conservation that w, —ws; —w; = 0, and c is a constant, so Ak = 0if n, = ns; =
n;. In general, this will not be true, since most crystals are dispersive and have an
index of refraction that depends on the frequency. The solution is to use birefringent
crystals, whose index of refraction is different for different polarizations of incident
light. Light polarized parallel to the optic axis of the crystal has a different index of
refraction, and one that is dependent on the angle between the incident ray and the
optic axis. This ray is called the extraordinary ray. Light polarized perpendicular to
the optic axis behaves normally, and is called the ordinary ray. Birefringence can be
used to compensate for the dispersion of the medium by polarizing the pump beam
perpendicular to the signal and idler beams. The angle of the crystal determines the
frequencies of the signal and idler, because the phase matching condition will be met
only for a specific frequency pair. The frequency can be tuned, therefore, by changing
the angle, or, in some cases, the temperature of the crystal, which would change its
index of refraction. Figure 7 shows the OPA process, with three beams going into
the nonlinear crystal, the signal and idler polarized perpendicular to the optic axis
(c-axis) and the pump polarized parallel to it. The tuning angle is the angle between

the propagation vector k of the pump beam and the optic axis.

-~
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FIG. 7: The OPA process

For a crystal to be suitable for an OPA laser system, it must have sufficiently
large nonlinearity and high damage threshold, and must also have low absorption at
the pump and signal frequencies. Lasers constructed using an OPA system have no
cavity, so the single pass gain must be very high, and they therefore must be pumped
by a high power laser. Common pump lasers include mode-locked solid-state lasers
such as Ti-sapphire and Nd:YAG, and their harmonics [16, 17].

The laser system used for the measurements in Section IV B is a traveling-wave

optical parametric amplifier of superflourescence (TOPAS) pumped with the funda-
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mental of a Ti-sapphire laser at 800nm. The seed signal beam that is amplified is
generated using superflourescence by tightly focusing part of the pump beam on the
crystal. The signal and idler of the OPA nonlinear crystal are output to another
nonlinear crystal that does a difference frequency generation (DFG) using a similar
process as the OPA to produce a beam at woytput = ws — w;. The system runs at a
repetition rate of 1kHz with a pulse duration of 2ps, spectral width of 15-20cm™*,
and a pulse energy of 18uJ at 1136cm ! (8.8um) and 1109cm ! (9um), and 9uJ at
861cm™" (11.6um).

C. Pump-probe lifetime measurements

The lifetime of the excited state can be approximated from the linewidth of the
FTIR spectrum, but can be more accurately determined by direct measurement using
the pump-probe transient bleaching technique. This technique uses ultrashort pulses
from a tunable infrared laser, either an optical parametric amplifier (OPA) or a free-

electron laser (FEL). Free-electron lasers have a higher repetition rate, on the order

Time delay

-
i

Detector

~ -

Sample/cryostat

Pump-probe
Laser setup

FIG. 8: Schematic diagram of the pump-probe setup

of MHz, as compared to OPA repetition rates in the kHz range, and they are also
more stable. The measurements included in Section IV B were done with an OPA
laser.

The schematic for a typical pump-probe experiment is shown in Figure 8. It is
also a form of a Michaelson interferometer. The laser beam, tuned to the frequency
of the vibrational mode, is split into two parts: the pump beam, which carries 91%
of the power, and the probe beam, which carries the remaining 9%. The two beams
are overlapped on the sample. The pump beam excites a fraction of the Si-O-Si or
Ge-O-Ge bonds to their excited state, up to a maximum of 50%, which causes an

increase in the transmission coefficient of the sample, since there are fewer LVMs in
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the ground state to absorb the photons. The transmission coefficient then decreases
over time as the excited modes decay back to the ground state and are available
to absorb the incident photons of the probe beam. The decaying transmission is
measured by varying the time delay between the pump and probe pulses, and the
lifetime of the excited mode can be determined. The intensity of the probe beam is

measured using a liquid nitrogen cooled HgCaTe detector [7].

IV. RESULTS
A. FTIR absorption spectra

There are three natural isotopes of oxygen, 60,70, and 80. Because the vibra-
tional frequency depends on the mass of the atoms involved, defects including different
isotopes have slightly different frequencies. In silicon, the absorption line of the 7O
defect is twice as broad as the °0O and 80 lines. Current theories offer no good ex-
planation for this. The broadening of the 7O line is independent of the concentration
of the defect. Pajot et al. proposed that the broadening was due to spin differences
between the isotopes [18], but we do not see it in the Ge spectrum or in the other
vibrational modes in Si, so the broadening is not simply due to the 7O isotope itself.
There are also isotopes of Si, but the effects are much smaller, producing only small
sidebands in the spectra. In Figure 9, the O isotopes are labeled and the linewidths
are listed.

Germanium has five natural isotopes (°Ge, ™?Ge, ®Ge, ™Ge, "®Ge), so the ab-
sorption spectra is much more complicated (see Figure 10), and the isotope of the Ge
atoms has a significant effect. The linewidths of the oxygen defects in Ge are much

1in Ge vs.

narrower than those in Si, on the order of ten times narrower (0.04 cm™
0.55 cm™" in Si). This large difference in linewidths has also not been explained. In
Figure 10, a typical linewidth is indicated and the peaks are labeled with the average

atomic mass of the two Ge atoms in the defect pseudo-molecule.
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FIG. 9: Silicon FTIR spectrum[18] FIG. 10: Germanium FTIR spectrum[19]

B. Lifetime measurements

The direct measurements of the lifetimes were done at Jefferson Lab’s FEL facility
using the TOPAS laser system described above in Section IIIB. The silicon sam-
ple used for the measurement was enriched with oxygen isotopes by diffusion. The
concentrations of 60, 170, and 0 are 20, 25, and 2.4 x 10'® cm™3 respectively.
The germanium sample contains all five germanium isotopes at their natural relative

concentrations and O at a concentration of 4.9 x 10 cm™3.

The samples were
mounted in an evacuated cryostat to allow for low temperature measurements.

Figure 11 shows a semi-log plot of the transient bleaching signal S, vs. time delay
for 0O and 7O in Si at 10K. The concentration of **O was too low for a measurement
to be made. Both plots show a good fit to single exponentials with time constants that
give decay times of T;=11.5 & 1ps for 0O and T;=4.5 & 0.4ps for '7O. The solid line
in Figure 11(a) is measured at a frequency between the two modes, and does not show
the decay, which indicates that the TOPAS spectrum is narrow enough to resolve the
two isotopes. Figure 12 shows a similar plot of the *O in germanium, with a decay
time of Ty=125 £ 10ps. The laser spectrum is not narrow enough to resolve the
germanium isotopes, so this represents an average over all possible pseudo-molecule
combinations.

Using Eq. I1.2, the linewidth of the absorption spectra can be calculated from the

lifetimes. This calculation gives a result of 1.12cm ! for 7O in Si, 0.44cm ! for 160
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FIG. 11: Transient bleaching signal (S,) vs. time for 0 and 70 in Si

in Si, and 0.04cm™! for O in Ge. These correspond well to the frequency-domain
measurements, indicating that at low temperature, the absorption lines of interstitial
oxygen are homogeneously broadened and dominated by the natural linewidths. A

summary of the results and comparison to frequency domain measurements (discussed
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FIG. 12: Transient bleaching signal (Sp) vs. time for °0 in Ge

in Section IV A) is shown in Table I.
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sample  measured lifetime linewidth from lifetime linewidth from FTIR

170 in Si 4.540.4ps 1.12cm ™! 1.2cm™!
160 in Si 11.540.5ps 0.44cm~! 0.6cm ™1
160 in Ge 125+10ps 0.042cm~! 0.04cm~!

TABLE I: Summary of measured lifetimes and comparison to frequency domain measure-

ments of linewidth

V. DISCUSSION
A. Multiphonon decay channels

In Section IV A above, I noted that the broadening of the 7O line could not be
a function simply of the isotope, and because it does not appear in the other vibra-
tional modes (symmetric stretch and bending), this effect cannot be a broadening of
the ground state. Therefore, the broadening of the absorption line must be related to
the excited vibrational state and the decay mechanism of that state. The decay mech-
anism was derived in Section II D, and the relevant quantity in the low temperature
limit was found to be the spectral density of accepting states.

The multiphonon spectral density of states can be expressed in terms of a convo-
lution of the single spectral densities of states (which are derived from the phonon
dispersion curve as described in Section IIB and Appendix A). A Convolution is an
integral which expresses the overlap of one function g as it is shifted over another
function f. A convolution is calculated as

frg=f®g= / " F@)lt - ) = / Tmft-ndr (V)

—0o0

The phonon band of Si only goes up to 522 cm™!

, and the anti-symmetric stretch
mode of the oxygen defect has a frequency ranging from 1085-1135 cm™!, depending
on the oxygen isotope. This mode, therefore, falls in the three-phonon density of
states in Si. In Ge also, the anti-symmetric stretch mode is in the three-phonon
density of states. Figures 13 and 14 show the three-phonon density of states of silicon

and germanium, and the three oxygen isotope lines, left to right on each graph, 20,

170, and '°0
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states sity of states

In the Si figure, the 7O line is found to fall on a peak with the highest phonon
density, while the 0 and 'O lines fall off to the side slightly. The peak is quite
steep, so this results in a significant difference in the phonon density of states at the
frequencies of vibration for the different oxygen isotopes. This difference in phonon
densities explains the wider linewidth of the 7O in the FTIR spectrum. The 7O
mode has a higher density of phonons to couple to, resulting in a shorter lifetime and
a wider linewidth.

A comparison of the Si and Ge figure indicates that the average density at the
frequencies of the oxygen defects in Ge is about a third of that in Si. A lower density
of accepting phonon modes would increase the lifetime, and reduce the linewidth, but
the difference in linewidth is almost ten times, which is not adequately explained by
a factor of three in density. One remaining distinction is the phonon combination of
the accepting modes. As explained in Section IIB and Appendix A, there are four
branches of phonons. The oxygen lines in silicon fall on the peak corresponding to
2TO phonons and 1TA phonon, while in germanium, it is the 3TO phonon peak. The
energy and momentum are already constrained to be conserved, so the only remaining
conservation rule we can apply is symmetry, and since the phonon combinations are

different, they will have different symmetries.
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B. Activity of accepting modes

A local vibrational mode (LVM), such as those indicated in Figure 4, can be
probed by one of two main spectroscopic methods, Raman scattering and infrared
(IR) spectroscopy. A mode’s activity describes which of these processes it responds
to. The experiment discussed in Section IV B is an example of IR spectroscopy. The
activity of a mode can be determined using symmetry selection rules based on the
group theory formalism discussed in Appendix B, since the transition from ground to
excited state must conserve symmetry. Both types of activity, and how to determine
a mode’s activity, are described further in Appendix C.

The other interaction that requires symmetry selection rules is the decay of the
excited vibrational mode into the phonon bath of the crystal. This decay transition
must also conserve symmetry. The anti-symmetric stretch mode falls in the three-
phonon density of states, and the three-phonon combination that the excited state
decays into is called the decay channel. In order to determine the allowed decay
channels, it is necessary to calculate the symmetry of the three-phonon combinations.

The symmetry and selection rules of two- and three-phonon combinations in
diamond-type crystals are discussed and calculated by Birman [20, 21]. For tran-
sitions where all of the elements are at the same symmetry point and are described
by the same point group, the total symmetry can be calculated as the direct product
of the elements. For IR and Raman activation (discussed further in Appendix C) the

product is
Llp()] @ Tp] @ Ly (v)], (V.2)

where ¢ is the operator describing the IR or Raman transition from (v) to (V).
These products are generally reducible to a direct sum of irreducible representations
of the point group, and the mode is active if the direct sum contains the totally
symmetric irreducible representation.

Calculating the symmetry of three-phonon combinations is complicated because
the phonons can occur at different symmetry points, and thus have different symmetry
point groups. For example, the interstitial oxygen defect occurs at the L-point, which
has D34 symmetry, but one of the allowed phonon decay channels is TO(L) + TA(L) +
TO(X). Two of the phonons are at the L-point, but one is at the X-point, and therefore
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has different symmetry. In general, the symmetry of a three-phonon combination
mode consisting of phonons with wavevectors El, Ez, and 123 is the direct product of

their irreducible representations:
*/;1 ® *gz ® *E3 (V-3)

The central problem, then, is the reduction of this direct product of irreducible rep-
resentations to a direct sum. The coefficients of the irreducible representations in the
direct sum have been calculated and tabulated by Birman [20]. We use the point
group of the point of highest symmetry because all the groups of other points will
be subgroups of that group. The O group is the point group for the I' point in the
diamond crystal structure. For a phonon decay channel to be infrared allowed, which
is what we need for the anti-symmetric excited vibrational state to decay into it, the
direct sum must contain the '™~ irreducible representation in the O, point group.
This is the irreducible representation of the dipole moment operator, u, which is the
operator that describes IR activity. The two- and three-phonon decay channels and
their activation were also calculated by Birman [21], but an example is included to il-
lustrate the principle. The critical symmetry points, the phonons at those points and

their symmetry irreducible representations are included in Table II. We know from

Critical point Phonon  Symmetry Critical point Phonon  Symmetry
r o(T) r(25+) L TO(L) 1,3-)
X TO(X) xX® LO(L) L0+
L(X) x® LA(L) L)
TA(X) x®) TA(L) 34

TABLE II: High symmetry points, phonons, and symmetry species in diamond

the three-phonon density of states (see Section V A) that for the Si decay channel we
need 2TO phonons and 1TA phonon. For the example combination mentioned above,

TO(L) + TA(L) + TO(X), the calculation of the direct sum is as follows:

TO(L)+ TA(L) + TO(X) — LG @ LY @ x® (V.4)

=M er?Igor®lexWexWex® e x® g x®)ex® (V.5
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= 12(X(1) o XDg X(3)) D11XW g Q(F(H‘) o) grlh) g F(Q*))
o 4(F(12+) oy F(12—)) ® 6(F(15+) D F(IS—) e F(25+) D F(25—)) (V.6)
So this three-phonon mode contains the required I'**=) irreducible representation,
with a multiplicity /activity of six. Tables III and IV list the infrared allowed three-

phonon combinations, 2TO + 1TA phonons for Si and 3TO phonons for Ge, and their

multiplicities.

Three-phonon combination ~ Multiplicity =~ Frequency (cm 1)

TO(X)+TA(X)+0(T") 3 1129

TO(L)+TA(L)+O(T) 6 1122

TO(L)+TA(L)+TO(X) 6 1071

2TO(X)+TA(X) 2 1078

2TO(L)+TA(X) 3 1134
total 20

TABLE III: Infrared active three-phonon combinations in silicon

Three-phonon combination ~ Multiplicity =~ Frequency (cm~!)

2TO(X)+0(I) 1 856
2TO(L)+0(X) 3 857
total 4

TABLE 1IV: Infrared active three-phonon combinations in germanium

As is clear from the tables, the accepting phonon combination in Si has much
higher IR activity than that in Ge, a multiplicity of 20 versus 4. The frequency of
the asymmetric stretch mode in Ge falls on a Raman active band (see Appendix C,
and therefore has many fewer infrared active modes for the LVM to couple to. This
disparity in density of accepting modes between silicon and germanium is a good

explanation for the factor of ten difference in their lifetimes.
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VI. CONCLUSIONS

We have measured the vibrational lifetimes of the asymmetric stretch mode of
oxygen isotopes in silicon and germanium. The measured lifetimes corroborate results
from frequency domain measurements. In silicon, the 17O mode falls on the peak of
the phonon density of states, which explains the much shorter lifetime (T;=4.5ps)
for this mode when compared to *O and 'O modes (T;~10ps), which fall to the
sides of the peak and have a lower density of states to couple to. The lifetime of 6O
in germanium is much longer, which can be explained by the difference in infrared
activity between the 2TO 4 TA phonon decay channels of the silicon modes and the

3TO channels in germanium.
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APPENDIX A: FIRST ORDER PHONON DISPERSION RELATIONS

In the simplest case, a crystal may be approximated by an elastic continuum,
neglecting the specific atomic structure of the crystal and treating it as a homogeneous
continuum. This approximation is only valid if the wavelength A of elastic waves is
much greater than the size of the unit cell in the crystal. Without detailing the
derivation, we find that the equation of motion can be calculated from the strain on
each end of an element Ax of the band, displaced from equilibrium by an amount u
and the density of the elastic material. This strain (e(x)) is equal to the force (mass

times acceleration):

182 82
cax;tA:c =F= pAa:—u (A1)

d(e(z + Azx) —e(x)) = 52

where ¢’ is the stiffness of the continuum, and p is the linear density of the material.

This is of the form of the wave equation,

2 2
8u:18u (A.2)

972~ wy 02’
where vy = /¢ /p is the velocity of sound in the medium. Solutions are in the form

of a travelling wave, and the dispersion relation, the relation between frequency v

and the wavevector k of the elastic wave, derived from this is linear,
w = vok. (A.3)

In this approximation, the material is said to be dispersion free, since the group
velocity of the travelling wave equals the phase velocity.

To go to shorter wavelengths, where A ~ a, the crystal may be considered an array
of harmonic oscillators of mass m, the bonds between them indicated by a spring with
a force constant g which indicates the bond strength. Using only nearest neighbors in
the calculation, the equation of motion is the standard F' = kx (Hooke’s Law spring
equation):

Pu 1

1
a2 - = ;g(um — w), (A.4)

where u; and u;,; represent the displacement of neighboring atoms. The solutions are

again travelling waves, u; = uge’ka — wt. Substituting this into Eq. A.4 and solving
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for w gives the following dispersion relation:

4 o1
w =1/ Eg |sm §ka|. (A.5)

This equation is periodic in k£ over a range of 27“ To allow momenta in both directions,
the range —7 < k < 7, which is known as the first Brillouin zone (see Section 11 A),
is taken as the cut-off of the possible values of k.

To describe lattices with two or more types of atoms in the unit cell, which is
the last approximation we will discuss, consider an array of harmonic oscillators with
atoms of different masses, m; and mg, in alternating positions. The equations of
motion can be similarly calculated and the resulting dispersion relation is

2 ) %
4w2:g<i+i)ﬂ:g (L+L> _M] (A.6)

my mgo my mgo mimsg

Clearly, this relation has two solutions. They are called the acoustic branch, which
corresponds to the different atoms moving in the same direction, as would be expected
with the propagation of a sound wave, and the optical branch, which is associated
with the different atom types moving in opposite directions. The term “optical” arises
because this contra-motion can cause electric polarization which can be excited by
light incident on the crystal. The optical branches are higher in energy and are less
dispersive than the acoustic branches [2, 22].

Additional features of the dispersion relation emerge from consideration and in-
clusion of the effects of a finite crystal, which has boundaries, generalization to three
dimensions, and longitudinal versus transverse wave motion. The optical and acoustic
branches split into, in order of decreasing frequency/energy, transverse optical (TO),
longitudinal optical (LO), longitudinal acoustic (LA), and transverse acoustic (TA)

branches.

APPENDIX B: GROUP THEORY AND SOLID STATE PHYSICS

Group theory is the study of mathematical groups and their properties. It is a
powerful formal analytical tool, and can be very useful in analyzing systems that have
certain symmetries.

A group can be a set of operators that satisfy the following four properties:
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1. The product of two operators that are members of the group must also be a

member of the group.
2. Multiplication is associative.

3. There must be an identity operator that commutes with all the other operators

and leaves them unchanged.

4. Each operator in the group must have an inverse that is also a member of the

group.

In chemistry and solid-state physics, the operators correspond to physical symme-
tries of the system operators. When applied to a molecule, a symmetry operator is a
rotation or reflection that moves the molecule to a new orientation that is equivalent

to its original one. There are five types of symmetry operators:

E: The identity operator does nothing to the molecule, it is necessary to satisfy

the third property of a mathematical group.

o: Reflection through a mirror plane. There are several types of mirror planes,

depending on their orientation to any rotational symmetry axes.

C,: Rotation about an axis. The subscript n indicates the fraction of a complete

rotation (2) that is to be performed; the angle is 2.

Sp: Improper rotation corresponds to a C), rotation followed by a ¢ reflection

through a mirror plane perpendicular to the C), axis.

i: Inversion involves passing each atom through the (inversion) center of the
molecule and placing it on the opposite side. It is equivalent to S5, but is always

given the symbol i. [23]

These symmetry operators can be so assembled as to satisfy all the properties of
a mathematical group. These are called point groups because there is at least one
point in space that is invariant under all the operations in the group. Molecules are
then classified as belonging to a certain point group based on their symmetry. The

undistorted molecule remains unchanged under all of the operations in the group.
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This classification of molecules into point groups is done using the equilibrium
configuration, but in the study of molecular vibrations, the distorted configuration
is more relevant. The effect of a symmetry operator on a distorted molecule can be
described by a linear transformation of coordinates. There are transformations that
correspond to each of the symmetry operations, and they also form a group. Two
groups (here, symmetry operators and linear transformations) that are related in this
way are called isomorphic. The transformations can be written in an infinite number
of coordinate systems, and in an arbitrary coordinate system, a new coordinate may
depend on more than one of the previous coordinates. However, by changing coor-
dinates, it is possible to simplify any one transformation to a diagonal form, where
each coordinate is transformed into some multiple of itself. It is not generally possible
to find a coordinate change that will reduce all the transformations corresponding to
the group operators simultaneously to a diagonal form. However, there exist coordi-
nate systems in which the set of transformations in the group are irreducible, i.e., the
transformations are block diagonal, and cannot be diagonalized further by applying
symmetry transformations [24].

Any two representations of a group are either equivalent, in which case they can
be transformed into one another via symmetry operations using the group elements,
or they are inequivalent, in which they cannot be transformed into one another. Each
point group has a finite number of unique, inequivalent irreducible representations;
any representation of the group can be transformed into one of these.

The completely reduced transformations form a representation of the group, and
are called the irreducible representations of the group. Tables V and VI below are
character tables for two of the relevant point groups for diamond crystal structures.
The top row is the symmetry operators and the first column is the irreducible repre-
sentations. The numbers indicate the character of the relation between the two. The
A, are non-degenerate, a 1 indicating symmetry under that operator and a -1 indicat-
ing anti-symmetry. The FE, are doubly-degenerate and the F), are triply-degenerate.
Their characters are the trace of the matrix representation relating the two or three
coordinates to the symmetry operator. These characters are useful in calculating
symmetry selection rules for vibrational interactions.

For any physical system such as a molecule, one can construct a character table de-
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representations E 2C3 3Cy 1 256 30y
Ly LO7) A, | 1 1 1 1 1 1
Ly L®7) Ay, | 1 1 11 1 -1
Ly LG9 E, 2 -1 0 2 10
Ly L) Ay, 1 1 1 -1 -1 -1
Ly LEY Ay, 1 1 -1 -1 -1 1
Ly LGY) E, 2 -1 0 -2 1 0

TABLE V: D34 point group symmetry operators and irreducible representations

representations E 8C3 3Cy 6Cy 6C, i 8S¢ 30, 6S; 6oy

r, rOH) A4, 1 1 1 1 1 1 1 1 1 1

Ty T@H Ay | 1 1 1 o S R | 1 1 1 -1
Ty, T2 g, 2 -1 2 0 0 2 -1 2 0 0
Ty TP Ry, 3 0 -1 -1 1 3 0 -1 -1 1
Loy T Fy, 3 0 -1 1 -1 3 0 -1 1 1
ry ) A4y, 1 1 1 1 1 -1 -1 -1 -1 -1
Iy T Ay, 1 1 1 -1 -1 -1 -1 -1 1 1
Iy 0U25) B, 2 -1 2 0 0 -2 1 -2 0 0
s ) By, 3 0 -1 -1 1 -3 0 1 1 -1
Ty; D7) Fp, 3 0 -1 1 -1 -3 0 1 -1 1

TABLE VI: O, point group symmetry operators and irreducible representations

scribing the group symmetry operations on the molecular coordinates. These tables,
combined with the tables for the irreducible representations, can be used to deter-
mine how many instances of particular irreducible representation are present for that
specific system. This in turn helps to determine selection rules for specific quantum

transitions.
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APPENDIX C: SYMMETRY SELECTION RULES

There are two types of spectroscopic activation for a vibrational mode in a crystal:
Raman and infrared (IR). Infrared activation is probed by measuring the IR absorp-
tion of molecule or crystal sample. Light of many different frequencies is passed
through the sample and the intensity of the transmitted light is measured at each
frequency. The FTIR spectrometer discussed in Section III A is a good example. A
vibrational mode will be IR active if the vibration changes the electric dipole moment
of the molecule or quasi-molecule. The dipole moment operator, i = g7, is said to
describe the transition for IR spectroscopy.

Raman spectroscopy does not measure transmitted light, but rather light scattered
from the sample. Most of the scattered light has the same frequency v, as the incident
light, but a small fraction (about 1/1000) does not have this frequency. Instead, it
has frequencies v; such that the energy difference AE = h|vy — ;| corresponds to
energies that are absorbed by the sample. The incident frequency vy is usually in the
visible, but the difference |vy— ;| is in the infrared, since it corresponds to vibrational
frequencies. The light with frequency v; < v, is called Stokes radiation, and is much
more common than anti-Stokes radiation, which is light with frequency v; > 1. A
mode is Raman active if the vibration changes the polarizability tensor, also called
the Raman scattering tensor or just the Raman tensor. The Raman tensor is denoted
Q.

The activity of a mode is described by a transition matrix element that indicates
the probability of the transition from the ground state to the excited state corre-

sponding to the mode in question. The transition probability amplitude is

Mo = (60 9w = [ T W) pow)dr (1)

The transition ¥ — /' is active if this matrix element is non-zero, with ¢ is & for IR
activation, and & for Raman activation. Basically, for the transition probability will
only be non-zero if the integrand ¢*(¢') ¢ ¢¥(v) is symmetric. An integral from —oo
to oo over an anti-symmetric function will always be zero.

The electric dipole operator is always anti-symmetric, since it is just a constant

times 7, which is anti-symmetric. In Si, the Raman tensor & is symmetric. The
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ground state, ¥y is unchanged under any of the symmetry operators, and is therefore
always totally symmetric. The excited state corresponding to the anti-symmetric
stretch mode is anti-symmetric. The integrand is then one symmetric function and
two anti-symmetric functions, so it is overall symmetric, the transition probability is
non-zero and the mode is IR active.

For example, to verify that the anti-symmetric stretch mode is IR active, the

matrix element is

where A;, is the totally symmetric irreducible representation in the Ds4 group, (E, @
Aygy) is the representation of the dipole operator, and Ay, is the representation of the
asymmetric stretch mode. The representation A;, is the identity for multiplication.

Using the character table in Table V, the direct product is the following

(1, ~1,-1,1)®(2,-1,0,-2,1,0)) ® (1,1, —-1,—1,—1,1)

= (3,0,-1,-3,0,1) ® (1,1, -1, -1, -1, 1)

= (3,0,1,3,0,1) (C.3)
= (2,-1,0,2,-1,0)® (1,1,1,1,1,1)

One can see by inspection that this is the direct sum E, @ A4, which contains the
totally symmetric representation A;, and therefore the asymmetric stretch mode is

IR active.
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